What Do You See When SETI’s Allen Telescope Array Is Aimed At The Sun?

A comparison between an observation of the sun using the ATA's 2.75 GHz band (left) and SOHO's 195A filter. Both are near-simultaneous observations on Oct. 1, 2009 (Saint-Hilaire et al., 2011)
A comparison between an observation of the sun using the ATA's 2.75 GHz band (left) and SOHO's 195A filter. Both are near-simultaneous observations on Oct. 1, 2009 (Saint-Hilaire et al., 2011).

And no, “aliens” isn’t the answer.

The Allen Telescope Array (ATA), located near Hat Creek, California, isn’t only used by the SETI Institute to seek out signals from extraterrestrial civilizations. The 42 6.1-meter antennae form an interferometer that can be used for a variety of astronomical studies — in reality, this is the main focus of the project. SETI studies “piggyback” the active astronomical research, passively collecting data.

Due to the radio interferometer’s wide field of view, one surprising use of the ATA is solar astronomy — at radio frequencies. The ATA can be used to simultaneously observe the whole of the solar disk at a range of frequencies rarely studied. As outlined in a recent arXiv publication, a University of California, Berkeley, team of astronomers headed by Pascal Saint-Hilaire have carried out the first ATA solar study, producing images of the sun in a light we rarely see it in (shown above).

According to the paper, active regions were observed at radio and microwave frequencies, spotting the emissions associated with bremsstrahlung — electromagnetic radiation generated by accelerated charged particles caught in intense magnetic fields, a feature typical inside solar active regions. Also, coronal interactions, or gyroresonance, between solar plasma and plasma waves (propagating along magnetic field lines) was detected.

Combining the ATA’s wide field of view, range of frequencies and high resolution, it looks like the ATA is the only solar radiotelescope on the planet.

For more on this fascinating study, read “Allen Telescope Array Multi-Frequency Observations of the Sun,” Saint-Hilaire et al., 2011. arXiv:1111.4242v1 [astro-ph.SR]

Exoplanet Count Tops 700

An artist's impression of a lone exoplanet transiting its parent star. There are now 700 confirmed alien worlds orbiting other stars (ESO)
An artist's impression of a lone exoplanet transiting its parent star. There are now 700 confirmed alien worlds orbiting other stars (ESO)

On Friday, the Extrasolar Planets Encyclopedia registered more than 700 confirmed exoplanets. Although this is an amazing milestone, it won’t be long until the “first thousand” are confirmed.

There are now more than 700 confirmed exoplanets in the database. The latest addition is the planet HD 100655 b.
— announced via the Exoplanet iPhone app

Only two months ago, the encyclopedia — administered by astrobiologist Jean Schneider of the Paris-Meudon Observatory — registered 600 confirmed alien worlds. Since then, there has been a slew of announcements including the addition of a batch of 50 exoplanets by the European Southern Observatory’s (ESO) High Accuracy Radial velocity Planet Searcher (or HARPS) in September.

The first exoplanet was discovered orbiting a Main Sequence star in 1995, and the rate of exoplanet detections has been accelerating ever since.

It is worth noting that hundreds more candidate exoplanet detections have been made, many of which have been spotted by NASA’s Kepler space telescope. Kepler is staring at the same patch of sky, waiting for alien worlds to cross the line of sight between their parent star and Earth, registering a slight dip in starlight brightness. The 1,235 candidates will be confirmed (or denied) as Kepler awaits future transits.

Detecting the slight dimming of starlight isn’t the only tool exoplanet hunters have to spot these alien worlds. The “radial velocity” method — as employed by systems such as the ESO’s HARPS — can detect the slight “wobble” of stars as orbiting worlds gravitationally “tug” on their parent stars. Both methods have their advantages and both are notching up an impressive exoplanet count. “Microlensing” has also been employed to spot a handful of exoplanets, as has direct imaging.

Exoplanetary studies are amongst the most exciting astronomical projects out there. Not only are we realizing there is a veritable zoo of worlds — some Earth-sized, others many times the mass of Jupiter — we are also pondering the most profound question: could extraterrestrial life inhabit these worlds?

For now, we have no clue, but life as we know it has a habit of springing up where we least expect it, it’s only a matter of time before we start to have some clue as to the existence of life as we don’t know it.

Some Galaxies Die Young… Others Recycle

Some galaxies undergo a rapid star formation phase, losing stellar gases to intergalactic space, others choose to recycle, thereby extending their star forming lifespans.
Some galaxies undergo a rapid star formation phase, losing stellar gases to intergalactic space, others choose to recycle, thereby extending their star forming lifespans (NASA, ESA, and A. Feild (STScI))

It sounds like an over-hyped public service announcement: If you don’t recycle, you’ll die a premature death.

But in the case of galaxies, according to three new Science papers based on Hubble Space Telescope data, this is a reality. Should a galaxy “go green,” reusing waste stellar gas contained within huge halos situated outside their visible disks, they will fuel future star-birth cycles, prolonging their lifespans.

Sadly for “starburst” galaxies — galaxies that undergo rapid star generation over very short time periods — they care little for recycling, resulting in an untimely death.

Using data from Hubble’s Cosmic Origins Spectrograph (COS), three teams studied 40 galaxies (including the Milky Way) and discovered vast halos of waste stellar gases. Contained within these spherical reservoirs — extending up to 450,000 light-years from their bright disks of stars — light elements such as hydrogen and helium were found to be laced with heavier elements like carbon, oxygen, nitrogen and neon. There’s only one place these heavy elements could have come from: fusion processes in the cores of stars and supernovae.

Interestingly, the quantity of heavy elements contained within the newly-discovered halos is similar to what is contained in the interstellar gases within the galaxies themselves.

“There’s as much heavy elements out in the halos of the galaxies as there is in their interstellar medium, that is what shocked us.” said Jason Tumlinson, an astronomer for the Space Telescope Science Institute in Baltimore, Md., in an interview for my Discovery News article “Galaxies That Don’t Recycle Live Hard, Die Young.”

But these heavy elements are stored in halos outside the galaxies; how the heck did it get there?

According to the researchers, powerful stellar winds jetting into intergalactic space have been observed, transporting the heavy elements with them. But there’s a catch. If the outflow is too strong, waste stellar gases are ejected from the galaxies completely. Unfortunately for one sub-set of galaxies, powerful stellar outflows come naturally.

Starburst galaxies rapidly generate stars, ejecting speedy streams of stellar waste gas. Some of these streams have been clocked traveling at 2 million miles per hour, escaping from the galaxy forever. In the case of a starbust galaxy, a “recycling halo” cannot be re-supplied — future star birth is therefore killed off.

“We found the James Dean or Amy Winehouse of that population, you know, the galaxies that lived fast and died young,” Tumlinson pointed out. “(Todd) Tripp’s team studied that in their paper.”

“That paper used a galaxy that is known as a ‘post-star burst galaxy’ and its spectrum showed that it had a very robust star burst (phase),” he continued. “It was one of those live fast, die young galaxies.”

Although fascinating, one idea struck me the hardest. On asking Tumlinson to speculate on how galactic recycling of stellar material may impact us, he said:

“Your body is 70 percent water and every water molecule has an oxygen atom in it. The theorists say the recycling time (in the Milky Way’s halo) is approximately a billion years, so that means — potentially — that some of the material (oxygen) inside your body has cycled in and out of the galaxy ten times in the history of the galaxy. At least once, maybe up to ten times.”

As Carl Sagan famously said: “We’re made of star stuff;” perhaps this should be rephrased to: “We’re made of recycled star stuff.”

Publications: